参考文献/References:
[1] Tavares O C , Tavares T R , Junior C , et al. Pedometric tools for
classification of southwestern Amazonian soils: A quali-quantitative
interpretation incorporating visible- near infrared
spectroscopy:[J]. Journal of Near Infrared Spectroscopy,2022,30
(1):18-30.
[2] Yang R- M,Wang L- J,Chen L- M,et al. Assessment of soil
quality using VIS- NIR spectra in invaded coastal wetlands[J].
Environmental Earth Sciences,2022,81(1):1-11.
[3] Li C,Zhao J,Li Y,et al. Modeling and Prediction of Soil Organic
Matter Content Based on Visible-Near-Infrared Spectroscopy[J].
Forests,2021,12(12):1809.
[4] Wang Y,Huang H,Chen X. Predicting Organic Matter Content,
Total Nitrogen and pH Value of Lime Concretion Black Soil
Based on Visible and Near Infrared Spectroscopy[J]. Eurasian
Soil Science,2021,54(11):1681-1688.
[5] 吴昀昭,田庆久,季峻峰,等. 土壤光学遥感的理论、方法及应
用[J]. 遥感信息,2003,(01):40-47+52.
[6] 李雪莹,范萍萍,刘岩,等. 多分类器融合提取土壤养分特征
波长[J]. 光谱学与光谱分析,2019,39(09):2862-2867.
[7] 周鹏,王炜超,杨玮,等. 土壤粒度对基于近红外离散波长土
壤全氮预测精度影响[J]. 光谱学与光谱分析,2021,41(12):
3682-3687.
[8] 张俊华,孙媛,贾科利,等. 不同盐结皮光谱特征及其盐渍化
信息预测研究[J]. 农业机械学报,2018,49(12):325-333+370.
[9] Fernández- Martínez F,Camacho- Tamayo J H,Rubiano-
Sanabria Y. Estimating texture and organic carbon of an Oxisol
by near infrared spectroscopy[J]. Revista Ciência Agron?mica,
2022,53.
[10] Pittaki Z,Hartemink A E,Huang J. Rapid estimation of a soilwater
retention curve using visible- near infrared spectroscopy
[J]. Journal of Hydrology,2021,(603):127195.
[11] Afriyie E,Verdoodt A,Mouazen A M,et al. Potential of visiblenear
infrared spectroscopy for the determination of three soil
aggregate stability indices[J]. Soil,2022,215:105218.
[12] 宋海燕,秦刚,韩小平,等. 基于近红外光谱和正交信号——
偏最小二乘法对土壤的分类[J]. 农业工程学报,2012,28
(07):168-171.
[13] 杨晗,曹见飞,王召海,等. 可见-近红外光谱的滨海土壤“除
水”盐分估测[J]. 光谱学与光谱分析,2021,41(10):3077.
[14] 史舟,王乾龙,彭杰,等. 中国主要土壤高光谱反射特性分类
与有机质光谱预测模型[J]. 中国科学:地球科学,2014,44
(05):978-988.
[15] Lecun Y,Bottou L,Bengio Y,et al. Gradient- based learning
applied to document recognition[J]. Proceedings of the IEEE,
1998,86(11):2278-2324.
[16] Hochreiter S,Schmidhuber J. Long Short- Term Memory[J].
Neural Computation,1997,9(8):1735-1780.
[17] Fawaz H I,Forestier G,Weber J,et al. Deep learning for time
series classification: a review[J]. Data mining knowledge
discovery,2019,33(4):917-963.
[18] 郑远攀,李广阳,李晔. 深度学习在图像识别中的应用研究
综述[J]. 计算机工程与应用,2019,55(12):20-36.
[19] 周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学
报,2017,40(06):1229-1251.
[20] 陈超,齐峰. 卷积神经网络的发展及其在计算机视觉领域中
的应用综述[J]. 计算机科学,2019,46(03):63-73.
[21] Hu J,Shen L,Sun G. Squeeze- and- excitation networks[C].
Proceedings of the IEEE conference on computer vision and
pattern recognition,2018:7132-7141.
[22] Agrawal A,Mittal N. Using CNN for facial expression
recognition:a study of the effects of kernel size and number of
filters on accuracy[J]. The Visual Computer,2020,36(2):405-
412.
[23] Livieris I E,Pintelas E,Pintelas P. A CNN- LSTM model for
gold price time- series forecasting[J]. Neural computing
applications,2020,32(23):17351-17360.
[24] He K,Zhang X,Ren S,et al. Deep residual learning for image
recognition[C]. Proceedings of the IEEE conference on
computer vision and pattern recognition,2016:770-778.